Gönderen: tkececi | 2010/04/26

Astronomi Günlüğü: Güneş dışı gezegen nasıl bulunur-2


MİKROMERCEKLENME YÖNTEMİ
Olası bir gezegeni belirlemek için bir yıldızı gözlemlediğimizi düşünelim: Yıldızın geri planındaki yıldızlardan biri de görüş alanımız içinde. Birden, arkadaki yıldızın ışığının bir süre parlaklaştığını ve bir süre sonra eski parlaklığına döndüğünü gözlüyoruz. Bir mikromerceklenme olayına tanık olduk. Arkadaki yıldızdan gelen ışık, bizim görüş yönümüzdeki bir cismin kütleçekimi nedeniyle büküldü.

Einstein’ın genel görelilik kuramına göre bizim kütleçekimi diye algıladığımız şey, uzay-zamanın eğriliğinin bir etkisi. Kütlesi olan her cisim, uzay zamanı büküyor. Arkadaki yıldızdan gelen ışık fotonları da bu bükülmüş uzayın eğriliğini izleyerek yön değiştiriyor. Yani, daha fazla sayıda foton, bizim yönümüze doğru gelmeye başlıyor. Bir başka deyişle odaklanıyor. Böyle olunca da arkadaki yıldızın parlaklığında artış oluyor.

Yalnız işler bu kadar basit değil. Mikromerceklenme, Einstein’ın bir düşünce deneyinin ürünü olan ve birçok kez gözlemle doğrulanmış olan “kütleçekimsel merceklenme” olgusunun bir türü. Aradaki “kütleçekim merceği” bir gökada, hatta gökadalar kümesi olduğunda, arkasında gizlenmiş ve doğrudan göremediğimiz “kaynak”, tabii ki başka bir gökada kadar büyük bir kaynak oluyor. Ve aradaki “mercek”, kaynaktan gelen ışığı büktüğünden merceğin çevresinde (gözlemci-mercek-kaynak dizilimindeki ufak farklara göre) kaynağın çember parçaları şeklinde uzamış ve (parlaklaşmış) farklı görüntüleri ortaya çıkıyor. Dünya’daki gözlemci, mercek gökada ya da küme ve arkasındaki kaynak gökada arasındaki dizilim binlerce hatta milyonlarca yıl fazla değişmediğinden, kaynak gökadanın çoklu görüntüleri uzun süre yerlerinde duruyor ve bu görüntülerin detaylı incelenmesi, arkadaki gökadanın uzaklığının, kütlesinin ve biçiminin duyarlı biçimde hesaplanmasına olanak tanıyor.

Aradaki merceğin bir yıldız, hatta bir gezegen gibi küçük bir gökcismi olması durumundaysa güçlükler başlıyor. Bir kere gözlemci-mercek-kaynak diziliminde, kaynağın merceğin arkasında ve çok az üzerinde olması gerekiyor. Böyle bir dizilimde merceklenme etkisi, kaynağın yalnızca yay biçiminde odaklanmış iki görüntüsünü oluşturuyor; ama bu iki yay arasındaki mesafe öylesine küçük oluyor ki, bunları Dünyamızdaki en gelişkin teleskoplarla bile ayrı ayrı görebilmek mümkün olmuyor. Sonuçta, iki ayrı görüntü, üst üste binmiş tek bir görüntü gibi algılanıyor. “Mikromerceklenme” adı da iki yay arasındaki uzaklığın görüntülenemeyecek kadar küçük olmasından kaynaklanıyor.

Bir başka sorun da mikromerceklenme olayının kısa olması, kaynak ve mercek yıldızla Dünya’nın birbirlerine göre hareket halinde olmaları nedeniyle birkaç gün ya da birkaç hafta sürebilmesi.

Eğer öndeki (mercek) yıldızın bir de gezegeni varsa, bu gezegenin kütleçekimi de merceklenme etkisine farkedilebilir bir katkı yapıyor ve böylece varlığı belirlenebiliyor.

Ancak, böyle bir dizilim olasılığı hayli düşük olduğundan, bu yöntemle anlamlı sayıda bir gezegen yakalayabilmek için çok büyük sayılarda uzak yıldızın aynı anda ve sürekli olarak gözlenmesi gerekiyor. Bunun için gökbilimciler ortak çalışma grupları kurarak, gözlem araçlarını gökadamız Samanyolu’nun çok yoğun merkez bölgesiyle, güney gökkürede Samanyolu’nun uydu gökadaları olan Büyük ve Küçük Magellan Bulutları’na çevirmiş bulunuyorlar. Araştırmalarda şimdiye kadar en az iki kesinleşmemiş, iki de kesinleşmiş gezegen adayı saptanmış durumda.

Yöntemin açık bir sorunu, sözkonusu sıralama bir daha gerçekleşemeyeceği için mikromerceklenme olayının tekrarlanamayan, bir seferlik bir olgu olması ve dolayısıyla inceleme için fazla yeterli zaman bırakmaması.

MASKELEME (OPTİK MÜDAHALE) YÖNTEMİ
Bir yıldızın yaydığı ışık, çevresinde dolanan bir gezegenin üzerinden yansıyan ışıktan, binlerce, hatta milyonlarca kez daha parlak olduğundan, normalde gezegenden yansıyan ışık görünemez. Ancak, teleskoplara konan ve koronograf denen ışık geçirmez bir maskeyle yıldızın ışığı perdelenirse, yakınındaki gezegenlerin zayıf ışığı ortaya çıkabilir. Özellikle de gezegen büyükse (Çapının Jüpiter’den hayli büyük olması gerekiyor), yıldızından uzaktaysa ve henüz gençse. Gençlik, gezegenin sıcak olması ve yoğun kızılaltı ışınım yaymasını sağlıyor.

YILDIZ ÇEVRESİNDEKİ DİSKLER
Birçok yıldızın çevresinde uzay tozundan diskler bulunur. Bunlara “enkaz diski” de denir. Bu disklerin görünebilmesinin nedeni, yıldız ışığını soğurup daha sonra kızılatı ışınım olarak tekrar yaymaları. Bu toz zerreciklerinin toplam kütlesinin Dünyamızın kütlesinin çok altında olmasına karşın, sahip oldukları toplam yüzey alanı sayesinde kızılaltı dalga boylarında çevresinde dolandıkları yıldızdan daha parlak görünüyorlar. Hubble ve Spitzer uzay teleskopları tarafından gözlemlenebilen bu diskler, Güneş’e görece yakın ve benzer kütlede olan yıldızların %15’inin çevresinde saptanmış.

Bu disklerdeki tozun kuyrukluyıldız ve asteroidler arasındaki çarpışmalardan kaynaklandığı düşünülüyor. Aslında yıldızdan gelen ışınım basıncının bu tozu görece kısa süre içinde uzaya püskürtmesi gerektiğinden, bunların süregelen varlığı, çarpışmalar sonucu sürekli olarak yeniden üretildikleri sonucuna götürüyor ve ana yıldızın çevresinde kuyrukluyıldız ve asteroid gibi küçük cisimlerin varlığının kanıtı olarak görülüyor.

Örneğin, tau Ceti adlı yıldızın çevresindeki toz diski, Güneş’in çevresinde, Neptün’ün yörüngesinin dışında dolanan kaya ve buzdan cisimlerden oluşan Kuiper Kuşağının benzeri, ancak 10 kat daha kalın olan bir kuşağın varlığına işaret olarak görülüyor.

Toz disklerinin yapısında gözlenen bazı özelliklerse, gezegen boyutlarında cisimlerin varlığına işaret olabiliyor. Bazı disklerin ortasında gözlenen boşluğun, bir gezegenin, yıldızla arasında kalan tozu süpürmesiyle oluşmuş olabileceği düşünülüyor. Bazı disklerdeyse, bir gezegenin kütleçekim etkisiyle oluşmuş olabilecek topaklar izleniyor. Bu iki özellik de Epsilon Eridani adlı yıldızın çevresinde gözleniyor ve daha önce radyal hız yöntemiyle belirlenmiş olan bir iç gezegene ek olarak, yıldızdan 40 astronomik birim uzaklıkta dolanan bir gezegenin varlığına işaret ediyor.

YOLDAKİ YÖNTEMLER

UZAYDAN GÖZLEM
Uzaydan yapılan ölçümler daha duyarlı sonuçlar veriyor, çünkü atmosferin görüntü bozucu etkileri ortadan kalktığı gibi gözlem araçları, atmosferden geçemeyen kızılaltı dalgaboylarını da kullanabiliyor. Uzaydan yapılacak gözlemlerle, Dünya benzeri kayaç gezegenlerin keşfedilebilmesi umuluyor.

NASA’nın 2009 Mart ayında fırlattığı Kepler uzay aracı, geçiş (transit) yöntemini kullanarak Kuğu (Cygnus Takımyıldızı bölgesinde 100.000 yıldızı aynı anda tarıyor. Araç, Dünya’dan da küçük gezegenleri bile yakalayabilecek duyarlılıkta.

NASA’nın 2014 yılında fırlatacağı Uzay Girişimölçüm Aracı (Space Interferometry Mission), astrometri yöntemiyle gezegen arayacak. Aracın Güneş’e yakın yıldızların çevresinde birçok Dünya benzeri gezegen yakalayabileceği düşünülüyor.

Avrupa Uzay Ajansı’nın Darwin uydusu ve NASA’nın Kayaç Gezegen Kaşifi adlı uydu takımı gezegenleri doğrudan görüntülemeye çalışacaklar. Bunlara Yeni Dünyalar Kaşifi adıyla, bir koronograf yardımıyla yıldızın ışığını perdeleyip çevresindeki olası gezegenleri görüntüleyecek bir araç projesi eklenmiş bulunuyor.

ÖRTEN İKİLİ SİSTEM IŞIK ÖLÇÜMLERİ
İkili bir sistemdeki yıldızlar ortak çekim merkezinin çevresinde dolanırken bizim görüş açımızda birbirlerini perdeleyecek biçimde konumlanmışlarsa, buna bir “örten ikili” sistem deniyor. Yıldızlardan yüzeyi daha parlak olanı, eş yıldızın diski tarafından kısmen de olsa örtüldüğünde, ölçülen en düşük ışık değerli döneme “birincil tutulma” deniyor. Yarım yörünge dönüşü sonra daha parlak yüzeyli yıldız eşinin bir bölümünü örttüğünde de “ikincil tutulum” gerçekleşiyor. Işığın bu en düşük olduğu zamanlar, tıpkı bir atarcanın atımları gibi düzenli bir döngü izliyor. Tek farkı, parlak radyo atımları yerine ışıktaki döngüsel azalışlar.

Eğer bu ikili sistemin çevresinde bir gezegen dolanıyorsa, eş yıldızlar, gezegenle olan ortak kütleçekim merkezinde bir dolanma hareketi yapacak ve ikilinin en düşük ışık değerinin zamanında da döngüsel bir kayma meydana gelecektir. Bu döngüsel zaman kaymaları, ikili sistemler çevresinde dolanan gezegenlerin belirlenmesi için en güvenli yol sayılıyor.

YÖRÜNGE EVRESİ YANSIMA DEĞİŞİMLERİ
Bu yöntemde iş yine Kepler’e düşüyor. Araç, asıl hedefi olan kayaç gezegenlerin yanı sıra, yıldızlarına çok yakında dolanan dev gezegenlerden yansıyan ışığı da gözleyecek. Böyle bir gezegenin tıpkı Ay’da gözlenenler gibi karanlık ile dolunay arasında değişen evreleri olacağından, yıldızdan gelen ışıkta küçük de olsa böyle döngüsel değişimler, bir gezegenin habercisi olacak. Kepler’in keşfedeceği uyduların büyük bölümünün bu yolla belirleneceği düşünülüyor. Bu yöntemle gezegenin atmosferi konusunda bilgiler edinilebileceği de düşünülüyor.

KUTUPLANMA ÖLÇÜMÜ
Bir yıldızın yaydığı ışık kutuplanmış değildir; yani ışığın salınım yönleri rastgeledir. Ancak, ışık bir gezegenin atmosferinden yansıdığında, ışık dalgaları atmosferdeki moleküllerle etkileşir ve kutuplanır.

Gezegenle yıldızın birlikte yaydıkları ışığın (gezegenin payı milyonda bir olur) incelenmesiyle bu ölçümler çok duyarlı biçimde yapılabilir. Kutuplanma ölçümü için kullanılan ve polarimetre diye adlandırılan aygıtlar, kutuplanmış ışığı algılayıp kutuplanmamış ışık demetlerini (yıldızın ışığı) reddetme yeteneğine sahipler.


Bir Cevap Yazın

Aşağıya bilgilerinizi girin veya oturum açmak için bir simgeye tıklayın:

WordPress.com Logosu

WordPress.com hesabınızı kullanarak yorum yapıyorsunuz. Log Out / Değiştir )

Twitter resmi

Twitter hesabınızı kullanarak yorum yapıyorsunuz. Log Out / Değiştir )

Facebook fotoğrafı

Facebook hesabınızı kullanarak yorum yapıyorsunuz. Log Out / Değiştir )

Google+ fotoğrafı

Google+ hesabınızı kullanarak yorum yapıyorsunuz. Log Out / Değiştir )

Connecting to %s

Kategoriler

%d blogcu bunu beğendi: